Minggu, 19 Mei 2013

EKOLOGI UMUM

www.tugasekologi.com

TUGAS
1. Jelaskan apa yang dimaksud dengan ekosistem
2. Tuliskan satu contoh ekosistem , serta jelaskan mengapa contoh yang anda ajukan merupakan suatu ekosistem
3. Apa yang anda ketahui tentang produktivitas dan rantai makanan
JAWAB
1.Ekosistem adalah suatu sistem ekologi yang terbentuk oleh hubungan timbal balik tak terpisahkan antara makhluk hidup dengan lingkungannya. Ekosistem bisa dikatakan juga suatu tatanan kesatuan secara utuh dan menyeluruh antara segenap unsur lingkungan hidup yang saling mepengaruhi.Ekosistem merupakan penggabungan dari setiap unit biosistem yang melibatkan interaksi timbal balik antara organisme dan lingkungan fisik sehingga aliran energi menuju kepada suatu struktur biotik tertentu dan terjadi suatu siklus materi antara organisme dan anorganisme. Matahari sebagai sumber dari semua energi yang ada.
a. Komponen pembentuk ekosistem :
    1. Komponen Abiotik
        Abiotik atau komponen tak hidup adalah komponen fisik dan kimia yang merupakan
        medium atau substrat tempat berlangsungnya kehidupan, atau lingkungan tempat
        hidup. Sebagian besar komponen abiotik bervariasi dalam ruang dan waktunya.
        Komponen abiotik dapat berupa bahan organik, senyawa anorganik.

        Faktor yang memengaruhi distribusi organisme, yaitu:

a)      Suhu
Proses biologi dipengaruhi suhu. Mamalia dan unggas membutuhkan energi untuk
meregulasi temperatur dalam tubuhnya.
b)      Air
Ketersediaan air memengaruhi distribusi organisme. Organisme di gurun beradaptasi
terhadap ketersediaan air di gurun.
c)      Garam
Konsentrasi garam memengaruhi kesetimbangan air dalam organisme melalui
osmosis. Beberapa organisme terestrial beradaptasi dengan lingkungan dengan
kandungan garam tinggi.
d)     Cahaya matahari
Intensitas dan kualitas cahaya memengaruhi proses fotosintesis. Air dapat menyerap
cahaya sehingga pada lingkungan air, fotosintesis terjadi di sekitar permukaan yang
terjangkau cahaya matahari. Di gurun, intensitas cahaya yang besar membuat
peningkatan suhu sehingga hewan dan tumbuhan tertekan.
e)      Tanah dan batu
Beberapa karakteristik tanah yang meliputi struktur fisik, pH, dan komposisi mineral
membatasi penyebaran organisme berdasarkan pada kandungan sumber makanannya
di tanah.
f)       Iklim
Iklim adalah kondisi cuaca dalam jangka waktu lama dalam suatu area. Iklim makro
meliputi iklim global, regional dan lokal. Iklim mikro meliputi iklim dalam suatu
daerah yang dihuni komunitas tertentu.



    2. Komponen Biotik
        Komponen biotik adalah komponen lingkungan yang terdiri atas makhluk hidup. Pada
         pokoknya makhluk hidup dapat digolngkan berdasarkan jenis-jenis tertentu, misalnya
         golongan manusia, hewan dan tumbuhan[1]. Makhluk hidup berdasarkan ukurannya
         digolongkan menjadi mikroorganisme dan makroorganisme. Manusia merupakan
         faktor biotik yang mempunyai pengaruh terkuat di bumi ini, baik dalam pengaruh
         memusnahkan dan melipatkan, atau mempercepat penyebaran hewan dan tumbuhan
        Berdasarkan peran dan fungsinya, makhluk hidup dibedakan menjadi tiga macam, yaitu:
a. Produsen
    Produsen yaitu organisme yang dapat menyusun senyawa organic (mengandung
    bahan kehidupan) dari bahan anorganik(tidak mengandung bahan kehidupa) menjadi
    makananya sendiri.Di dalam membentuk makananya sendiri,organisme ini dibantu
    oleh cahaya matahari dan sering disebut organisme autotrop.Yang termasuk
    kelompok ini meliputi tumbuhan hijau,beberapa jenis bakteri dan ganggang biru.
b. Konsumen
    Konsumen meliputi organisme yang tidak mampu membuat zat makanan sendiri,dan
    untuk memenuhi kebutuhan makanannya bergantung pada organisme lain.Organisme
    ini disebut juga organisem heterotrp.Komponen yang tergolong heterotrof adalah :
    manusia ,hewan,jamur,dan mikroba.Organisme konsumen dibedakan berdasarkan
    atas jenis makanya menjadi golongan herbivora (pemakan tumbuhan), karnivora
    (pemakan daging),dan omnivora (pemakan segalanya).
Berdasarkan tingkatannya, konsumen dibagi menjadi:
a)      Konsumen primer, yaitu pemakan langsung produsen
      Contohnya adalah semua bangsa herbivora serta omnivora seperti: sapi, kambing,\
      ulat, tikus, dll.
b)      Konsumen sekunder, yaitu pemakan konsumen primer
Contohnya ialah sebagian karnivora dan omnivora seperti: ayam, katak, ular, trenggiling, harimau, cheetah, dll.
c)      Konsumen tersier, yaitu pemakan konsumen sekunder.
Contohnya ialah sebagian karnivora dan omnivora seperti: hiu, gurita, elang, dll.

c. Dekomposer
    Dekomposer disebut juga perombak(pengurai),yaitu organisem yang bertugas
    merombak sisa-sisa organisme lain untuk memperoleh makanannya.Adanya
    perombak ini memungkinkan zat-zat organic terurai dan mengalami daur ulang
    kembali menjadi hara.Yang termasuk kelompok perombak adalah bakteri dan jamur.
 d. Detrivora
     Detrivora adalah organisme yang memakan partikel-partikel organic
     (detritus).Detritus merupakan hancuran jaringan hewan atau tumbuhan yang
     melapuk.Yang termasuk golongan ini adlah cacing tanah,siput ,lipan,keluwing dan
     teripang.

b. Ketergantungan
    Ketergantungan pada ekosistem dapat terjadi antar komponen biotik atau antara komponen
    biotik dan abiotik
1.          Antar komponen biotik
       Ketergantungan antar komponen biotik dapat terjadi melalui :
a)     Rantai makanan, yaitu perpindahan materi dan energi melalui proses makan dan dimakan dengan urutan tertentu. Tiap tingkat dari rantai makanan disebut tingkat trofi atau taraf trofi. Karena organisme pertama yang mampu menghasilkan zat makanan adalah tumbuhan maka tingkat trofi pertama selalu diduduki tumbuhan hijau sebagai produsen. Tingkat selanjutnya adalah tingkat trofi kedua, terdiri atas hewan pemakan tumbuhan yang biasa disebut konsumen primer. Hewan pemakan konsumen primer merupakan tingkat trofi ketiga, terdiri atas hewan-hewan karnivora. Setiap pertukaran energi dari satu tingkat trofi ke tingkat trofi lainnya, sebagian energi akan hilang.[2]
b)     Jaring- jaring makanan, yaitu rantai-rantai makanan yang saling berhubungan satu sama lain sedemikian rupa sehingga membentuk seperi jaring-jaring. Jaring-jaring makanan terjadi karena setiap jenis makhluk hidup tidak hanya memakan satu jenis makhluk hidup lainnya.
2.      Antar komponen biotik dan abiotik
Ketergantungan antara komponen biotik dan abiotik dapat terjadi melalui siklus materi, seperti:
a)       siklus nitrogen
b)       siklus air
c)       siklus karbon
d)       siklus sulfur

a. Siklus Nitrogen
Pada eukariota, siklus urea (bahasa Inggris: urea cycle, ornithine cycle) merupakan bagian dari siklus nitrogen, yang meliputi reaksi konversi amonia menjadi urea. Siklus ini ditemukan pertama kali oleh Hans Krebs dan Kurt Henseleit pada tahun 1932.
Pada mamalia, siklus urea terjadi di dalam hati, produk urea kemudian dikirimkan ke organ ginjal untuk diekskresi. Dua jenjang reaksi pada siklus urea terjadi di dalam mitokondria. Ringkasan reaksi siklus urea adalah:

Description: \mbox{2NH}_3 + \mbox{CO}_2 + \mbox{3ATP} \rightarrow \mbox{NH}_2.\mbox{NH}_2.\mbox{CO} + \mbox{H}_2\mbox{O} + \mbox{3ADP}

Amonia
Amonia merupakan produk dari reaksi deaminasi oksidatif yang bersifat toksik. Pada manusia, kegagalan salah satu jenjang pada siklus urea dapat berakibat fatal, karena tidak terdapat lintasan alternatif untuk menghilangkan sifat toksik tersebut selain mengubahnya menjadi urea. Defisiensi enzimatik pada siklus ini dapat mengakibatkan simtoma hiperamonemia yang dapat berujung pada kelainan mental, kerusakan hati dan kematian. Sirosis pada hati yang diakibatkan oleh konsumsi alkohol berlebih terjadi akibat defisiensi enzim yang menghasilkan Sarbamil fosfat pada jenjang reaksi pertama pada siklus ini.
Ikan mempunyai rasio amonia yang rendah di dalam darah, karena amonia diekskresi sebagai gugus amida dalam senyawa glutamina. Reaksi hidrolisis pada glutamina akan menkonversinya menjadi asam glutamat dan melepaskan gugus amonia.
Sedangkan manusia hanya mengekskresi sedikit sekali amonia, yang dikonversi oleh asam di dalam urin menjadi ion NH4+, sebagai respon terhadap asidosis karena amonia memiliki kapasitas seperti larutan penyangga yang menjaga pH darah dengan menetralkan kadar asam yang berlebih.

Urea
Urea merupakan zat diuretik higroskopik dengan menyerap air dari plasma darah menjadi urin. Kadar urea dalam darah manusia disebut BUN (bahasa Inggris: Blood Urea Nitrogen). Peningkatan nilai BUN terjadi pada simtoma uremia dalam kondisi gagal ginjal akut dan kronis atau kondisi gagal jantung dengan konsekuensi tekanan darah menjadi rendah dan penurunan laju filtrasi pada ginjal. Pada kasus yang lebih buruk, hemodialisis ditempuh untuk menghilangkan larutan urea dan produk akhir metabolisme dari dalam darah.
Pada hewan seperti burung dan reptil yang harus mencadangkan air di dalam tubuhnya, nitrogen diekskresi sebagai asam urat yang bersenyawa dengan sedikit kandungan air. Sedang pada manusia, asam urat tidak disintesis dari amonia, melainkan dari adenina dan guanina yang terdapat pada berbagai nukleotida. Asam urat biasanya diekskresi dalam jumlah sedikit, melalui urin. Kadar asam urat dalam darah dapat meningkat pada penderita gangguan ginjal dan leukimia. Bentuk garam dari asam urat dapat mengendap menjadi batu ginjal maupun batu kemih. Pada artritis, endapan garam dari asam urat terjadi pada tulang rawan yang terdapat pada persendian.

 Jenjang reaksi
Sarbamil fosfat sintetase, sebuah enzim, merupakan katalis pada reaksi dengan substrat NH3, CO2 dan ATP menjadi sarbamil fosfat,
yang kemudian diaktivasi oleh asam N-asetilglutamat yang terbentuk dari asam glutamat dan asetil-KoA dengan enzim N-asetilglutamat sintetase. N-asetilglutamat merupakan regulator yang penting dalam ureagenesis selain arginina, kortikosteroid dan protein yang lain.
Reaksi kondensasi yang terjadi pada ornitina lantas memicu konversi sarbamil fosfat menjadi sitrulina dengan bantuan enzim ornitina transarbamilase.
Kemudian sitrulina dilepaskan dari dalam matriks menuju sitoplasma, dan kondensasi terjadi dengan asam aspartat dan enzim argininosuksinat sintetase, membentuk asam argininosuksinat, yang kemudian diiris oleh argininasuksinat liase menjadi asam fumarat dan arginina. Asam fumarat akan dioksidasi dalam siklus sitrat di dalam mitokondria, sedangkan arginina akan teriris menjadi urea dan ornitina dengan enzim arginase hepatik. Baik argininosuksinat liase maupun arginase diinduksi oleh rasa lapar, dibutiril cAMP dan kortikosteroid.

b. Siklus Air

Siklus air atau siklus hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfer ke bumi dan kembali ke atmosfir melalui kondensasi, presipitasi, evaporasi dan transpirasi.

Pemanasan air laut oleh sinar matahari merupakan kunci proses siklus hidrologi tersebut dapat berjalan secara terus menerus. Air berevaporasi, kemudian jatuh sebagai presipitasi dalam bentuk hujan, salju, hujan batu, hujan es dan salju (sleet), hujan gerimis atau kabut.
Pada perjalanan menuju bumi beberapa presipitasi dapat berevaporasi kembali ke atas atau langsung jatuh yang kemudian diintersepsi oleh tanaman sebelum mencapai tanah. Setelah mencapai tanah, siklus hidrologi terus bergerak secara kontinu dalam tiga cara yang berbeda:
  • Evaporasi / transpirasi - Air yang ada di laut, di daratan, di sungai, di tanaman, dsb. kemudian akan menguap ke angkasa (atmosfer) dan kemudian akan menjadi awan. Pada keadaan jenuh uap air (awan) itu akan menjadi bintik-bintik air yang selanjutnya akan turun (precipitation) dalam bentuk hujan, salju, es.
  • Infiltrasi / Perkolasi ke dalam tanah - Air bergerak ke dalam tanah melalui celah-celah dan pori-pori tanah dan batuan menuju muka air tanah. Air dapat bergerak akibat aksi kapiler atau air dapat bergerak secara vertikal atau horizontal dibawah permukaan tanah hingga air tersebut memasuki kembali sistem air permukaan.
  • Air Permukaan - Air bergerak diatas permukaan tanah dekat dengan aliran utama dan danau; makin landai lahan dan makin sedikit pori-pori tanah, maka aliran permukaan semakin besar. Aliran permukaan tanah dapat dilihat biasanya pada daerah urban. Sungai-sungai bergabung satu sama lain dan membentuk sungai utama yang membawa seluruh air permukaan disekitar daerah aliran sungai menuju laut.
Air permukaan, baik yang mengalir maupun yang tergenang (danau, waduk, rawa), dan sebagian air bawah permukaan akan terkumpul dan mengalir membentuk sungai dan berakhir ke laut. Proses perjalanan air di daratan itu terjadi dalam komponen-komponen siklus hidrologi yang membentuk sistem Daerah Aliran Sungai (DAS).Jumlah air di bumi secara keseluruhan relatif tetap, yang berubah adalah wujud dan tempatnya.Tempat terbesar tejadi di laut.

c. Siklus Karbon

Siklus karbon adalah siklus biogeokimia dimana karbon dipertukarkan antara biosfer, geosfer, hidrosfer, dan atmosfer Bumi (objek astronomis lainnya bisa jadi memiliki siklus karbon yang hampir sama meskipun hingga kini belum diketahui).
Dalam siklus ini terdapat empat reservoir karbon utama yang dihubungkan oleh jalur pertukaran. Reservoir-reservoir tersebut adalah atmosfer, biosfer teresterial (biasanya termasuk pula freshwater system dan material non-hayati organik seperti karbon tanah (soil carbon)), lautan (termasuk karbon anorganik terlarut dan biota laut hayati dan non-hayati), dan sedimen (termasuk bahan bakar fosil). Pergerakan tahuan karbon, pertukaran karbon antar reservoir, terjadi karena proses-proses kimia, fisika, geologi, dan biologi yang bermaca-macam. Lautan mengadung kolam aktif karbon terbesar dekat permukaan Bumi, namun demikian laut dalam bagian dari kolam ini mengalami pertukaran yang lambat dengan atmosfer.
Neraca karbon global adalah kesetimbangan pertukaran karbon (antara yang masuk dan keluar) antar reservoir karbon atau antara satu putaran (loop) spesifik siklus karbon (misalnya atmosfer - biosfer). Analisis neraca karbon dari sebuah kolam atau reservoir dapat memberikan informasi tentang apakah kolam atau reservoir berfungsi sebagai sumber (source) atau lubuk (sink) karbon dioksida.


Karbon di Atmosfer
Bagian terbesar dari karbon yang berada di atmosfer Bumi adalah gas karbon dioksida (CO2). Meskipun jumlah gas ini merupakan bagian yang sangat kecil dari seluruh gas yang ada di atmosfer (hanya sekitar 0,04% dalam basis molar, meskipun sedang mengalami kenaikan), namun ia memiliki peran yang penting dalam menyokong kehidupan. Gas-gas lain yang mengandung karbon di atmosfer adalah metan dan kloroflorokarbon atau CFC (CFC ini merupakan gas artifisial atau buatan). Gas-gas tersebut adalah gas rumah kaca yang konsentrasinya di atmosfer telah bertambah dalam dekade terakhir ini, dan berperan dalam pemanasan global.
Karbon diambil dari atmosfer dengan berbagai cara:
  • Ketika matahari bersinar, tumbuhan melakukan fotosintesa untuk mengubah karbon dioksida menjadi karbohidrat, dan melepaskan oksigen ke atmosfer. Proses ini akan lebih banyak menyerap karbon pada hutan dengan tumbuhan yang baru saja tumbuh atau hutan yang sedang mengalami pertumbuhan yang cepat.
  • Pada permukaan laut ke arah kutub, air laut menjadi lebih dingin dan CO2 akan lebih mudah larut. Selanjutnya CO2 yang larut tersebut akan terbawa oleh sirkulasi termohalin yang membawa massa air di permukaan yang lebih berat ke kedalaman laut atau interior laut (lihat bagian solubility pump).
  • Di laut bagian atas (upper ocean), pada daerah dengan produktivitas yang tinggi, organisme membentuk jaringan yang mengandung karbon, beberapa organisme juga membentuk cangkang karbonat dan bagian-bagian tubuh lainnya yang keras. Proses ini akan menyebabkan aliran karbon ke bawah (lihat bagian biological pump).
  • Pelapukan batuan silikat. Tidak seperti dua proses sebelumnya, proses ini tidak memindahkan karbon ke dalam reservoir yang siap untuk kembali ke atmosfer. Pelapukan batuan karbonat tidak memiliki efek netto terhadap CO2 atmosferik karena ion bikarbonat yang terbentuk terbawa ke laut dimana selanjutnya dipakai untuk membuat karbonat laut dengan reaksi yang sebaliknya (reverse reaction).
Karbon dapat kembali ke atmosfer dengan berbagai cara pula, yaitu:
  • Melalui pernafasan (respirasi) oleh tumbuhan dan binatang. Hal ini merupakan reaksi eksotermik dan termasuk juga di dalamnya penguraian glukosa (atau molekul organik lainnya) menjadi karbon dioksida dan air.
  • Melalui pembusukan binatang dan tumbuhan. Fungi atau jamur dan bakteri mengurai senyawa karbon pada binatang dan tumbuhan yang mati dan mengubah karbon menjadi karbon dioksida jika tersedia oksigen, atau menjadi metana jika tidak tersedia oksigen.
  • Melalui pembakaran material organik yang mengoksidasi karbon yang terkandung menghasilkan karbon dioksida (juga yang lainnya seperti asap). Pembakaran bahan bakar fosil seperti batu bara, produk dari industri perminyakan (petroleum), dan gas alam akan melepaskan karbon yang sudah tersimpan selama jutaan tahun di dalam geosfer. Hal inilah yang merupakan penyebab utama naiknya jumlah karbon dioksida di atmosfer.
  • Produksi semen. Salah satu komponennya, yaitu kapur atau gamping atau kalsium oksida, dihasilkan dengan cara memanaskan batu kapur atau batu gamping yang akan menghasilkan juga karbon dioksida dalam jumlah yang banyak.
  • Di permukaan laut dimana air menjadi lebih hangat, karbon dioksida terlarut dilepas kembali ke atmosfer.
  • Erupsi vulkanik atau ledakan gunung berapi akan melepaskan gas ke atmosfer. Gas-gas tersebut termasuk uap air, karbon dioksida, dan belerang. Jumlah karbon dioksida yang dilepas ke atmosfer secara kasar hampir sama dengan jumlah karbon dioksida yang hilang dari atmosfer akibat pelapukan silikat; Kedua proses kimia ini yang saling berkebalikan ini akan memberikan hasil penjumlahan yang sama dengan nol dan tidak berpengaruh terhadap jumlah karbon dioksida di atmosfer dalam skala waktu yang kurang dari 100.000 tahun.
 Karbon di Biosfer
Sekitar 1900 gigaton karbon ada di dalam biosfer. Karbon adalah bagian yang penting dalam kehidupan di Bumi. Ia memiliki peran yang penting dalam struktur, biokimia, dan nutrisi pada semua sel makhluk hidup. Dan kehidupan memiliki peranan yang penting dalam siklus karbon:
  • Autotroph adalah organisme yang menghasilkan senyawa organiknya sendiri dengan menggunakan karbon dioksida yang berasal dari udara dan air di sekitar tempat mereka hidup. Untuk menghasilkan senyawa organik tersebut mereka membutuhkan sumber energi dari luar. Hampir sebagian besar autotroph menggunakan radiasi matahari untuk memenuhi kebutuhan energi tersebut, dan proses produksi ini disebut sebagai fotosintesis. Sebagian kecil autotroph memanfaatkan sumber energi kimia, dan disebut kemosintesis. Autotroph yang terpenting dalam siklus karbon adalah pohon-pohonan di hutan dan daratan dan fitoplankton di laut. Fotosintesis memiliki reaksi 6CO2 + 6H2O → C6H12O6 + 6O2
  • Karbon dipindahkan di dalam biosfer sebagai makanan heterotrop pada organisme lain atau bagiannya (seperti buah-buahan). Termasuk di dalamnya pemanfaatan material organik yang mati (detritus) oleh jamur dan bakteri untuk fermentasi atau penguraian.
  • Sebagian besar karbon meninggalkan biosfer melalui pernafasan atau respirasi. Ketika tersedia oksigen, respirasi aerobik terjadi, yang melepaskan karbon dioksida ke udara atau air di sekitarnya dengan reaksi C6H12O6 + 6O2 → 6CO2 + 6H2O. Pada keadaan tanpa oksigen, respirasi anaerobik lah yang terjadi, yang melepaskan metan ke lingkungan sekitarnya yang akhirnya berpindah ke atmosfer atau hidrosfer.
  • Pembakaran biomassa (seperti kebakaran hutan, kayu yang digunakan untuk tungku penghangat atau kayu bakar, dll.) dapat juga memindahkan karbon ke atmosfer dalam jumlah yang banyak.
  • Karbon juga dapat berpindah dari bisofer ketika bahan organik yang mati menyatu dengan geosfer (seperti gambut). Cangkang binatang dari kalsium karbonat yang menjadi batu gamping melalui proses sedimentasi.
  • Sisanya, yaitu siklus karbon di laut dalam, masih dipelajari. Sebagai contoh, penemuan terbaru bahwa rumah larvacean mucus (biasa dikenal sebagai "sinkers") dibuat dalam jumlah besar yang mana mampu membawa banyak karbon ke laut dalam seperti yang terdeteksi oleh perangkap sedimen . Karena ukuran dan kompisisinya, rumah ini jarang terbawa dalam perangkap sedimen, sehingga sebagian besar analisis biokimia melakukan kesalahan dengan mengabaikannya.
Penyimpanan karbon di biosfer dipengaruhi oleh sejumlah proses dalam skala waktu yang berbeda: sementara produktivitas primer netto mengikuti siklus harian dan musiman, karbon dapat disimpan hingga beberapa ratus tahun dalam pohon dan hingga ribuan tahun dalam tanah. Perubahan jangka panjang pada kolam karbon (misalnya melalui de- atau afforestation) atau melalui perubahan temperatur yang berhubungan dengan respirasi tanah) akan secara langsung memengaruhi pemanasan global.

Karbon di Laut
Laut mengandung sekitar 36.000 gigaton karbon, dimana sebagian besar dalam bentuk ion bikarbonat. Karbon anorganik, yaitu senyawa karbon tanpa ikatan karbon-karbon atau karbon-hidrogen, adalah penting dalam reaksinya di dalam air. Pertukaran karbon ini menjadi penting dalam mengontrol pH di laut dan juga dapat berubah sebagai sumber (source) atau lubuk (sink) karbon. Karbon siap untuk saling dipertukarkan antara atmosfer dan lautan. Pada daerah upwelling, karbon dilepaskan ke atmosfer. Sebaliknya, pada daerah downwelling karbon (CO2) berpindah dari atmosfer ke lautan. Pada saat CO2 memasuki lautan, asam karbonat terbentuk:
CO2 + H2O H2CO3
Reaksi ini memiliki sifat dua arah, mencapai sebuah kesetimbangan kimia. Reaksi lainnya yang penting dalam mengontrol nilai pH lautan adalah pelepasan ion hidrogen dan bikarbonat. Reaksi ini mengontrol perubahan yang besar pada pH:
H2CO3 H+ + HCO3
Model Siklus Karbon
Model siklus karbon dapat digabungkan ke dalam model iklim global, sehingga reaksi interaktif dari lautan dan biosfer terhadap nilai CO2 di masa depan dapat dimodelkan. Ada ketidakpastian yang besar dalam model ini, baik dalam sub model fisika maupun biokimia (khususnya pada sub model terakhir). Model-model seperti itu biasanya menunjukkan bahwa ada timbal balik yang positif antara temperatur dan CO2. Sebagai contoh, Zeng dkk. (GRL, 2004 ) menemukan dalam model mereka bahwa terdapat pemanasan ekstra sebesar 0,6 °C (yang sebaliknya dapat menambah jumlah CO2 atmosferik yang lebih besar).

c. Energi dalam Ekosistem 
Setiap kegiatan memerlukan energi. Dari mana makhluk hidup memperoleh energi? Sumber energi untuk organisme adalah energi kimia yang terdapat di dalam makanan. Makhluk hidup tidak mampu menciptakan energi, melainkan hanya memindahkan dan memanfaatkannya untuk beraktivitas.
Description: http://2.bp.blogspot.com/-XHcrxlHclck/Tvsrr39PXaI/AAAAAAAABH8/cQo4SMO-2oE/s400/4.png

Perpindahan energi berlangsung dari matahari ke tumbuhan hijau melalui proses fotosintesis. Di sini energi cahaya diubah menjadi energi kimia. Sewaktu tumbuhan hijau dimakan herbivora, energi kimia yang tersimpan dalam tumbuhan berpindah ke dalam tubuh herbivora dan sebagian energi hilang berupa panas. Demikian juga sewaktu herbivora dimakan karnivora. Oleh karena itu, aliran energi pada rantai makanan jumlahnya semakin berkurang. Pergerakan energi di dalam ekosistem hanya satu jalur, berupa aliran energi.

d.Pola Interaksi

a. Komensalisme
Komensalisme adalah interaksi yang saling menguntungkan  satu organisme tetapi tidak berpengaruh pada yang lain. Contoh Epifit yang tumbuh pada tumbuhan inang. Tumbuhan anggrek yang hidup menempel pada pohon (inang), memanfaatkan inang hanya sebagai tempat fisik untuk hidup. Tumbuhan inang tidak mendapat tekanan (dirugikan) dengan adanya tumbuhan anggrek.
bMutualisme
     Bentuk interaksi dimana kedua pasangan yang berinteraksi  saling menguntungkan. Contoh umum mutualisme adalah penyerbukan yang dilakukan oleh serangga.
c.  Parasitisme
 Hubungan di antara dua organisme, yang satu sebagai parasit  dan yang lain sebagai inang. Parasit memperoleh keuntungan dari kehidupan bersama ini dengan mendapatkan bahan makanan, sedangkan inang tertekan (dirugikan). Contoh hubungan antara tumbuhan Beluntas (Plucea indica) dengan Tali putri (Cuscuta).

e. Jenis Ekosistem
Secara umum ada tiga tipe ekosistem, yaitu ekositem air, ekosisten darat, dan ekosistem buatan :
1. Akuatik (air)
Ciri-ciri ekosistem air tawar antara lain variasi suhu tidak menyolok, penetrasi cahaya kurang, dan terpengaruh oleh iklim dan cuaca. Macam tumbuhan yang terbanyak adalah jenis ganggang, sedangkan lainnya tumbuhan biji. Hampir semua filum hewan terdapat dalam air tawar. Organisme yang hidup di air tawar pada umumnya telah beradaptasi.
Habitat laut (oseanik) ditandai oleh salinitas (kadar garam) yang tinggi dengan ion CI- mencapai 55% terutama di daerah laut tropik, karena suhunya tinggi dan penguapan besar. Di daerah tropik, suhu laut sekitar 25 °C. Perbedaan suhu bagian atas dan bawah tinggi, sehingga terdapat batas antara lapisan air yang panas di bagian atas dengan air yang dingin di bagian bawah yang disebut daerah termoklin.
Estuari (muara) merupakan tempat bersatunya sungai dengan laut. Estuari sering dipagari oleh lempengan lumpur intertidal yang luas atau rawa garam. Ekosistem estuari memiliki produktivitas yang tinggi dan kaya akan nutrisi. Komunitas tumbuhan yang hidup di estuari antara lain rumput rawa garam, ganggang, dan fitoplankton Komunitas hewannya antara lain berbagai cacing, kerang, kepiting, dan ikan.
Dinamakan demikian karena yang paling banyak tumbuh di gundukan pasir adalah tumbuhan Ipomoea pes caprae yang tahan terhadap hempasan gelombang dan angin. Tumbuhan yang hidup di ekosistem ini menjalar dan berdaun tebal.
Sungai adalah suatu badan air yang mengalir ke satu arah. Air sungai dingin dan jernih serta mengandung sedikit sedimen dan makanan. Aliran air dan gelombang secara konstan memberikan oksigen pada air. Suhu air bervariasi sesuai dengan ketinggian dan garis lintang. Ekosistem sungai dihuni oleh hewan seperti ikan kucing, gurame, kura-kura, ular, buaya, dan lumba-lumba.
Ekosistem ini terdiri dari coral yang berada dekat pantai. Efisiensi ekosistem ini sangat tinggi. Hewan-hewan yang hidup di karang memakan organisme mikroskopis dan sisa organik lain. Berbagai invertebrata, mikro organisme, dan ikan, hidup di antara karang dan ganggang. Herbivora seperti siput, landak laut, ikan, menjadi mangsa bagi gurita, bintang laut, dan ikan karnivora. Kehadiran terumbu karang di dekat pantai membuat pantai memiliki pasir putih.
Kedalamannya lebih dari 6.000 m. Biasanya terdapat lele laut dan ikan laut yang dapat mengeluarkan cahaya. Sebagai produsen terdapat bakteri yang bersimbiosis dengan karang tertentu.
Lamun atau seagrass adalah satu‑satunya kelompok tumbuh-tumbuhan berbunga yang hidup di lingkungan laut. Tumbuh‑tumbuhan ini hidup di habitat perairan pantai yang dangkal. Seperti hal­nya rumput di darat, mereka mempunyai tunas berdaun yang tegak dan tangkai‑tangkai yang merayap yang efektif untuk berbiak. Berbeda dengan tumbuh‑tumbuhan laut lainnya (alga dan rumput laut), lamun berbunga, berbuah dan meng­hasilkan biji. Mereka juga mempunyai akar dan sistem internal untuk mengangkut gas dan zat‑zat hara. Sebagai sumber daya hayati, lamun banyak dimanfaatkan untuk berbagai keperluan.
2.Terestrial (darat)

Hutan hujan tropis terdapat di daerah tropik dan subtropik. Ciri-cirinya adalah curah hujan 200-225 cm per tahun. Spesies pepohonan relatif banyak, jenisnya berbeda antara satu dengan yang lainnya tergantung letak geografisnya. Tinggi pohon utama antara 20-40 m, cabang-cabang pohon tinggi dan berdaun lebat hingga membentuk tudung (kanopi). Dalam hutan basah terjadi perubahan iklim mikro, yaitu iklim yang langsung terdapat di sekitar organisme. Daerah tudung cukup mendapat sinar matahari, variasi suhu dan kelembapan tinggi, suhu sepanjang hari sekitar 25 °C. Dalam hutan hujan tropis sering terdapat tumbuhan khas, yaitu liana (rotan) dan anggrek sebagai epifit. Hewannya antara lain, kera, burung, badak, babi hutan, harimau, dan burung hantu.
Sabana dari daerah tropik terdapat di wilayah dengan curah hujan 40 – 60 inci per tahun, tetapi temepratur dan kelembaban masih tergantung musim. Sabana yang terluas di dunia terdapat di Afrika; namun di Australia juga terdapat sabana yang luas. Hewan yang hidup di sabana antara lain serangga dan mamalia seperti zebra, singa, dan hyena.
Padang rumput terdapat di daerah yang terbentang dari daerah tropik ke subtropik. Ciri-ciri padang rumput adalah curah hujan kurang lebih 25-30 cm per tahun, hujan turun tidak teratur, porositas (peresapan air) tinggi, dan drainase (aliran air) cepat. Tumbuhan yang ada terdiri atas tumbuhan terna (herbs) dan rumput yang keduanya tergantung pada kelembapan. Hewannya antara lain: bison, zebra, singa, anjing liar, serigala, gajah, jerapah, kangguru, serangga, tikus dan ular.
Gurun terdapat di daerah tropik yang berbatasan dengan padang rumput. Ciri-ciri ekosistem gurun adalah gersang dan curah hujan rendah (25 cm/tahun). Perbedaan suhu antara siang dan malam sangat besar. Tumbuhan semusim yang terdapat di gurun berukuran kecil. Selain itu, di gurun dijumpai pula tumbuhan menahun berdaun seperti duri contohnya kaktus, atau tak berdaun dan memiliki akar panjang serta mempunyai jaringan untuk menyimpan air. Hewan yang hidup di gurun antara lain rodentia, semut, ular, kadal, katak, kalajengking, dan beberapa hewan nokturnal lain.
Hutan gugur terdapat di daerah beriklim sedang yang memiliki emapt musim, ciri-cirinya adalah curah hujan merata sepanjang tahun. Jenis pohon sedikit (10 s/d 20) dan tidak terlalu rapat. Hewan yang terdapat di hutam gugur antara lain rusa, beruang, rubah, bajing, burung pelatuk, dan rakun (sebangsa luwak).
Taiga terdapat di belahan bumi sebelah utara dan di pegunungan daerah tropik, ciri-cirinya adalah suhu di musim dingin rendah. Biasanya taiga merupakan hutan yang tersusun atas satu spesies seperti konifer, pinus, dan sejenisnya. Semak dan tumbuhan basah sedikit sekali, sedangkan hewannya antara lain moose, beruang hitam, ajag, dan burung-burung yang bermigrasi ke selatan pada musim gugur.
Tundra terdapat di belahan bumi sebelah utara di dalam lingkaran kutub utara dan terdapat di puncak-puncak gunung tinggi. Pertumbuhan tanaman di daerah ini hanya 60 hari. Contoh tumbuhan yang dominan adalah sphagnum, liken, tumbuhan biji semusim, tumbuhan perdu, dan rumput alang-alang. Pada umumnya, tumbuhannya mampu beradaptasi dengan keadaan yang dingin.
Karst berawal dari nama kawasan batu gamping di wilayah Yugoslavia. Kawasan karst di Indonesia rata-rata mempunyai ciri-ciri yang hampir sama yaitu, tanahnya kurang subur untuk pertanian, sensitif terhadap erosi, mudah longsor, bersifat rentan dengan pori-pori aerasi yang rendah, gaya permeabilitas yang lamban dan didominasi oleh pori-pori mikro. Ekosistem karst mengalami keunikan tersendiri, dengan keragaman aspek biotis yang tidak dijumpai di ekosistem lain.

3.Buatan
Ekosistem buatan adalah ekosistem yang diciptakan manusia untuk memenuhi kebutuhannya. Ekosistem buatan mendapatkan subsidi energi dari luar, tanaman atau hewan peliharaan didominasi pengaruh manusia, dan memiliki keanekaragaman rendah. Contoh ekosistem buatan adalah
Ekosistem kota memiliki metabolisme tinggi sehingga butuh energi yang banyak. Kebutuhan materi juga tinggi dan tergantung dari luar, serta memiliki pengeluaran yang eksesif seperti polusi dan panas.
Ekosistem ruang angkasa bukan merupakan suatu sistem tertutup yang dapat memenuhi sendiri kebutuhannya tanpa tergantung input dari luar. Semua ekosistem dan kehidupan selalu bergantung pada bumi.
2. Contoh Ekosistem
Gurun terdapat di daerah tropik yang berbatasan dengan padang rumput. Ciri-ciri ekosistem gurun adalah gersang dan curah hujan rendah (25 cm/tahun). Perbedaan suhu antara siang dan malam sangat besar. Tumbuhan semusim yang terdapat di gurun berukuran kecil. Selain itu, di gurun dijumpai pula tumbuhan menahun berdaun seperti duri contohnya kaktus, atau tak berdaun dan memiliki akar panjang serta mempunyai jaringan untuk menyimpan air. Hewan yang hidup di gurun antara lain rodentia, semut, ular, kadal, katak, kalajengking, dan beberapa hewan nokturnal lain.
Kenapa gurun dapat dikatakan sebagai suatu ekosistem karena didalam gurun terjadi hubungan timbal balik antara komponen abiotik dengan biotik didalamnya, atau terjadi hubungan antara mahluk hidup yang ada di gurun dengan lingkungan di gurun.

3.Produktivitas dan Rantai makanan
a. Produktivitas
Produktivitas ekosistem yaitu keseluruhan sistem yang dinyatakan dengan biomassa atau bioenergi dalam kurun waktu tertentu. Produktivitas ekosistem merupakan parameter pengukuran yang penting dalam penentuan aliran energi total melalui semua tingkat trofi dari suatu ekosistem.
Energi matahari memasuki seluruh tingkat trofi dalam suatu ekosistem melalui produsen, tersimpan dalam bentuk senyawa-senyawa organik (hasil fotosintesis). Seluruh senyawa organik yang dikandung dalam produsen dari suatu ekosistem, disebut produktivitas primer kasar (PPK). PPK digunakan oleh produsen untuk respirasi (sekitar 35%), sisanya sebagai produktivitas primer bersih (PPB). PPB dari produsen inilah yang digunakan oleh konsumen I dan konsumen berikutnya dengan nilai PPB yang semakin mengecil.
Sumber energi utama bagi kehidupan adalah cahaya Matahari. Energi cahaya Matahari masuk ke dalam komponen biotik melalui produsen (organisme fotoautotropik) yang diubah menjadi energi kimia tersimpan di dalam senyawa organik. Energi kimia mengalir dari produsen ke konsumen dari berbagai tingkat tropik melalui jalur rantai makanan. Energi kimia tersebut digunakan organisme untuk pertumbuhan dan perkembangan. Kemampuan organisme-organisme dalam ekosistem untuk menerima dan menyimpan energi dinamakan produktivitas ekosistem.
Produktivitas ekosistem terdiri dari produktivitas primer dan produktivitas sekunder :
a.Produktivitas primer
Produktivitas primer adalah kecepatan organisme autotrof sebagai produsen mengubah energi cahaya Matahari menjadi energi kimia dalam bentuk bahan organik. Hanya sebagian kecil energi cahaya yang dapat diserap oleh produsen. Produktivitas primer berbeda pada setiap ekosistem, yang terbesar ada pada ekosistem hutan hujan tropis dan ekosistem hutan bakau. Produktifitas primer dibagi menjadi dua yaitu produktivitas primer kotor (PPk) dan produktivitas primer bersih (PPB). [3]
  • Produktivitas primer kotor (PPk) adalah seluruh bahan organik yang dihasilkan dari proses fotosintesis pada organisme fotoautotrof. Lebih kurang 20% dari PPK
digunakan oleh organisme fotoautotrof untuk respirasi, tumbuh dan berkembang. [3]
  • Produktivitas primer bersih (PPB) adalah sisa energi produktifitas primer kotor yang baru disimpan. Biomassa organisme autotrof (produsen) diperkirakan mencapai 50%-90% dari seluruh bahan organik hasil fotosintesis. Hal ini menunjukkan simpanan energi kimia yang dapat ditransfer ke trofik selanjutnya melalui hubungan makan dimakan dalam ekosistem. [3]
b.Produktivitas sekunder & Efisiensi ekologi
Produktivitas sekunder (PS) adalah kecepatan organisme heterotrof mengubah energi kimia dari bahan organik yang dimakan menjadi simpanan energi kimia baru di dalam tubuhnya. Energi kimia dalam bahan organik yang berpindah dari produsen ke organisme heterotrof (konsumen primer) dipergunakan untuk aktivitas hidup dan hanya sebagian yang dapat diubah menjadi energi kimia yang tersimpan di dalam tubuhnya sebagai produktivitas bersih.
Demikian juga perpindahan energi ke konsumen sekunder dan tersier akan selalu menjadi berkurang. Perbandingan produktivitas bersih antara trofik dengan trofik-trofik di atasnya dinamakan efisiensi ekologi. Diperkirakan hanya sekitar 10% energi yang dapat ditransfer sebagai biomassa dari trofik sebelumnya ke trofik berikutnya.

b.Rantai Makanan
Rantai makanan adalah perpindahan energi makanan dari sumber daya tumbuhan melalui seri organisme atau melalui jenjang makan (tumbuhan - herbivora - carnivora - omnivora). Pada setiap tahap pemindahan energi, 80%–90% energi potensial hilang sebagai panas, karena itu langkah-langkah dalam rantai makanan terbatas 4-5 langkah saja. Dengan perkataan lain, semakin pendek rantai makanan semakin besar pula energi yang tersedia.
Rantai Makanan dan Jaring-Jaring Makanan- Di dalam rantai makanan, tumbuhan disebut sebagai produsen karena memasok oksigen ke lingkungan dan sumber makanan bagi organisme heterotof. Oleh karena itu tumbuhan memegang peranan penting dalam menjaga kelangsungan kehidupan di bumi karena rantai makanan diawali oleh tumbuhan hijau sebagai produsen. Sedangkan pada ekosistem perairan anggota Crustacea yang berupa zooplankton merupakan salah satu bagian penting dalam mata rantai makanan. Pada ekosistem air sungai, air sungai yang mengalir deras tidak mendukung keberadaan komunitas plankton, karena akan terbawa arus. Sebagai gantinya terjadi fotosintesis dari ganggang yang melekat dan tanaman berakar, sehingga dapat mendukung rantai makanan.
Ada dua tipe dasar rantai makanan:
  1. Rantai makanan rerumputan (grazing food chain). Misalnya: tumbuhan - herbivora - carnivora - omnivora.
  2. Rantai makanan sisa (detritus food chain). Bahan mati mikroorganisme (detritivora = organisme pemakan sisa) predator dan bangkai.
Para ilmuwan ekologi mengenal tiga macam rantai pokok, yaitu rantai pemangsa, rantai parasit, dan rantai saprofit.
1.      Rantai pemangsa, landasan utamanya adalah tumbuhan hijau sebagai produsen. Rantai pemangsa dimulai dari hewan yang bersifat herbivora sebagai konsumen I, dilanjutkan dengan hewan karnivora yang memangsa herbivora sebagai konsumen ke-2 dan berakhir pada hewan pemangsa karnivora maupun herbivora sebagai konsumen ke-3.
2.      Rantai parasit, dimulai dari organisme besar hingga organisme yang hidup sebagai parasit. Contoh organisme parasit antara lain cacing, bakteri, dan benalu.
3.      Rantai saprofit, dimulai dari organisme mati ke jasad pengurai. Misalnya jamur dan bakteri.


Tingkatan dalam rantai makanan disebut juga trofik. Tingkat trofik yang secara mendasar mendukung tingkatan lainnya dalam suatu ekosistem terdiri dari organisme autotrof yang berperan sebagai produsen primer. Berdasarkan komponen tingkat trofik nya, rantai makanan dibedakan menjadi dua, yaitu rantai makanan perumput dan rantai makanan detritus. Rantai makanan perumput merupakan rantai makanan yang diawali dari tumbuhan pada trofik awalnya. Contohnya tumbuhan dimakan belalang, belalang dimakan burung, burung dimakan ular, dan ular dimakan burung elang. Sedangkan rantai makanan detritus tidak dimulai dari tumbuhan, tetapi dimulai dari detritus sebagai trofik awalnya. Contoh rantai makanan detritus adalah seresah atau dedaunan dimakan cacing tanah, cacing tanah dimakan ikan, dan ikan dimakan manusia.
Pada gilirannya, herbivora akan menyediakan makanan untuk karnivora. Belalang tadi dapat dimakan oleh katak. Proses pemindahan energi dari makhluk ke makhluk dapat berlanjut. Katak dapat dimakan oleh ular, yang pada gilirannya ular dimakan oleh burung elang. Proses makan dan dimakan pada serangkaian organisme disebut sebagai disebut Rantai Makanan, atau “food chains”. Semua rantai makanan berasal dari organisme autotrofik. Lihat bagan di bawah ini. Organisme yang langsung memakan tumbuhan disebut herbivor (konsumen primer), yang memakan herbivor disebut karnivor (konsumen sekunder), dan yang memakan konsumen sekunder disebut konsumen tersier. Setiap tingkatan organisme dalam satu rantai makanan disebut tingkatan tropik. Dalam ekosistem rantai makanan-rantai makanan itu saling bertalian. Kebanyakan sejenis hewan memakan yang beragam, dan makhluk tersebut pada gilirannya juga menyediakan makanan berbagai makhluk yang memakannya, maka terjadi yang dinamakan jaring-jaring makanan (food web), dengan kata lain Proses rantai makanan yang saling menjalin dan kompleks tersebut dinamakan jaring makanan.
Dalam rantai makanan, organisme pada tingkatan trofik rendah memiliki jumlah individu lebih banyak. Makin tinggi tingkat trofik, makin sedikit jumlah individunya dalam ekosistem. Dalam rantai makanan, konsumen pada tingkat trofik tertentu tidak hanya memakan satu jenis organisme yang ada di tingkat trofi k bawahnya. Akan tetapi, setiap organisme dapat memakan dua atau lebih organisme lain. Ini menyebabkan terjadinya beberapa rantai makanan di dalam ekosistem saling berhubungan satu sama lain. Hubungan antar-rantai makanan tersebut membentuk susunan yang lebih kompleks, disebut jaring-jaring makanan (food web). dengan kata lain Proses rantai makanan yang saling menjalin dan kompleks tersebut dinamakan jaring makanan. Sehingga rantai makanan dari produsen → konsumen primer → konsumen sekunder → dan seterusnya, sebenarnya hanyalah penyederhanaan dari beberapa permutasi yang dapat dimiliki oleh interaksi makan dan dimakan. Contoh jaring-jaring makanan yang terjadi pada suatu ekosistem